AT1 receptor-mediated uptake of angiotensin II and NHE-3 expression in proximal tubule cells through a microtubule-dependent endocytic pathway.

نویسندگان

  • Xiao C Li
  • Ulrich Hopfer
  • Jia L Zhuo
چکیده

Angiotensin II (ANG II) is taken up by proximal tubule (PT) cells via AT1 (AT1a) receptor-mediated endocytosis, but the underlying cellular mechanisms remain poorly understood. The present study tested the hypothesis that the microtubule- rather than the clathrin-dependent endocytic pathway regulates AT1-mediated uptake of ANG II and ANG II-induced sodium and hydrogen exchanger-3 (NHE-3) expression in PT cells. The expression of AT1 receptors, clathrin light (LC) and heavy chain (HC) proteins, and type 1 microtubule-associated proteins (MAPs; MAP-1A and MAP-1B) in PT cells were knocked down by their respective small interfering (si) RNAs before AT1-mediated FITC-ANG II uptake and ANG II-induced NHE-3 expression were studied. AT1 siRNAs inhibited AT1 expression and blocked ANG II-induced NHE-3 expression in PT cells, as expected (P < 0.01). Clathrin LC or HC siRNAs knocked down their respective proteins by approximately 90% with a peak response at 24 h, and blocked the clathrin-dependent uptake of Alexa Fluor 594-transferrin (P < 0.01). However, neither LC nor HC siRNAs inhibited AT1-mediated uptake of FITC-ANG II or affected ANG II-induced NHE-3 expression. MAP-1A or MAP-1B siRNAs markedly knocked down MAP-1A or MAP-1B proteins in a time-dependent manner with peak inhibitions at 48 h (>76.8%, P < 0.01). MAP protein knockdown resulted in approximately 52% decreases in AT1-mediated FITC-ANG II uptake and approximately 66% decreases in ANG II-induced NHE-3 expression (P < 0.01). These effects were associated with threefold decreases in ANG II-induced MAP kinases ERK 1/2 activation (P < 0.01), but not with altered AT1 expression or clathrin-dependent transferrin uptake. Both losartan and AT1a receptor deletion in mouse PT cells completely abolished the effects of MAP-1A knockdown on ANG II-induced NHE-3 expression and activation of MAP kinases ERK1/2. Our findings suggest that the alternative microtubule-dependent endocytic pathway, rather than the canonical clathrin-dependent pathway, plays an important role in AT1 (AT1a)-mediated uptake of extracellular ANG II and ANG II-induced NHE-3 expression in PT cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective knockdown of AT1 receptors by RNA interference inhibits Val-ANG II endocytosis and NHE-3 expression in immortalized rabbit proximal tubule cells

Li XC, Zhuo JL. Selective knockdown of AT1 receptors by RNA interference inhibits Val-ANG II endocytosis and NHE-3 expression in immortalized rabbit proximal tubule cells. Am J Physiol Cell Physiol 293: C367–C378, 2007. First published April, 11, 2007; doi:10.1152/ajpcell.00463.2006.—Receptor-mediated endocytosis of extracellular ANG II has been suggested to play an important role in the regula...

متن کامل

Selective knockdown of AT1 receptors by RNA interference inhibits Val5-ANG II endocytosis and NHE-3 expression in immortalized rabbit proximal tubule cells.

Receptor-mediated endocytosis of extracellular ANG II has been suggested to play an important role in the regulation of proximal tubule cell (PTC) function. Using immortalized rabbit PTCs as an in vitro cell culture model, we tested the hypothesis that extracellular ANG II is taken up by PTCs through angiotensin type 1 receptor (AT(1); or AT(1a)) receptor-mediated endocytosis and that inhibitio...

متن کامل

Activation of D4 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells.

The dopaminergic and renin-angiotensin systems interact to regulate blood pressure. Disruption of the D4 dopamine receptor gene in mice produces hypertension that is associated with increased renal angiotensin type 1 (AT1) receptor expression. We hypothesize that the D4 receptor can inhibit AT1 receptor expression and function in renal proximal tubule cells from Wistar-Kyoto (WKY) rats, but the...

متن کامل

Membrane trafficking of angiotensin receptor type-1 and mechanochemical signal transduction in proximal tubule cells.

Cellular localization and trafficking of the major angiotensin receptor, AT1, was studied in mouse proximal tubule cell lines because angiotensin II concentrations in the luminal fluid of proximal tubules are greater than the K(d) of the receptor and would predict high turnover rates of the receptor. Mouse proximal tubule cells can exist in 2 polarized, differentiated states after confluence: a...

متن کامل

Proximal tubule NHE3 activity is inhibited by beta-arrestin-biased angiotensin II type 1 receptor signaling.

Physiological concentrations of angiotensin II (ANG II) upregulate the activity of Na(+)/H(+) exchanger isoform 3 (NHE3) in the renal proximal tubule through activation of the ANG II type I (AT1) receptor/G protein-coupled signaling. This effect is key for maintenance of extracellular fluid volume homeostasis and blood pressure. Recent findings have shown that selective activation of the beta-a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 297 5  شماره 

صفحات  -

تاریخ انتشار 2009